581 | 1 | 9 |
下载次数 | 被引频次 | 阅读次数 |
利用超分子识别与组装的基本原理,发展新型超分子催化剂以实现催化反应的超分子选择性调控是当今催化领域研究的热点和前沿。柱芳烃是一类具有刚性骨架结构的新型大环主体分子,其富电子的空腔和优异的主客体化学性质能够对客体分子进行选择性识别,使其在超分子催化中显示了独特的催化性能。综述了近十年来柱芳烃在超分子催化领域的应用研究进展,重点阐述主-客体相互作用对超分子催化选择性的调控作用,并对其存在问题进行总结及发展前景进行展望。
Abstract:Supramolecular catalysts have been developing for controlling selectivity of supramolecular catalysis by virtue of the basic principles of supramolecular recognition and assembly, which has becomed a hot topic in the field of catalysis.Pillararenes is a novel macrocyclic host possessing rigid architecture.The electron-rich cavity and excellent host-guest property make pillararenes great supramolecular hosts with selective guest binding and unique catalytic performance in supramolecular catalysis.This review focued on the recent progress in supramolecular catalysis based on the pilliararenes in recent decade.The manipulation of selectivity in supramolecular catalysis via host-guest interaction was emphatically introduced.The existing problems of current study and the perspectives were also discussed.
[1]STRULSON C A,MOLDEN R C,KEATING C D,et al.RNA catalysis through compartmentalization[J].Nat.Chem.,2012,4(11):941-946.
[2]FANG Y,POWELL J A,LI E,et al.Catalytic reactions within the cavity of coordination cages[J].Chem.Soc.Rev.,2019,48(17):4 707-4 730.
[3]STANK A,KOKH D B,FULLER J C,et al.Protein binding pocket dynamics[J].Acc.Chem.Res.,2016,49(5):809-815.
[4]YU Y,REBEK J.Reactions of folded molecules in water[J].Acc.Chem.Res.,2018,51(12):3 031-3 040.
[5]WANG K,JORDAN J H,HU X Y,et al.Supramolecular strategies for controlling reactivity within confined nanospaces[J].Angew.Chem.Int.Ed.,2020,59(33):13 712-13 721.
[6]GROMMET A B,FELLER M,KLAJN R.Chemical reactivity under nanoconfinement[J].Nat.Nanotechnol.,2020,15(4):256-271.
[7]YANG C,INOUE Y.Supramolecular photochirogenesis[J].Chem.Soc.Rev.,2014,43(12):4 123-4 143.
[8]BROWN C J,TOSTE F D,BERGMAN R G,et al.Supramolecular catalysis in metal-ligand cluster hosts[J].Chem.Rev.,2015,115(9):3 012-3 035.
[9]RAMAMURTHY V.Photochemistry within a water-soluble organic capsule[J].Acc.Chem.Res.,2015,48(11):2 904-2 917.
[10]RAMAMURTHY V,SIVAGURU J.Supramolecular photochemistry as a potential synthetic tool:Photocycloaddition[J].Chem.Rev.,2016,116(17):9 914-9 993.
[11]MORIMOTO M,BIERSCHENK S M,XIA K T,et al.Advances in supramolecular host-mediated reactivity[J].Nat.Catal.,2020,3(12):969-984.
[12]CHEN X Y,CHEN H,D- ORD- EVI■,et al.Selective photodimerization in a cyclodextrin metal-organic framework[J].J.Am.Chem.Soc.,2021,143(24):9 129-9 139.
[13]YU G,JIE K,HUANG F.Supramolecular amphiphiles based on host-guest molecular recognition motifs[J].Chem.Rev.,2015,115(15):7 240-7 303.
[14]ZUO M,VELMURUGAN K,WANG K,et al.Insight into functionalized-macrocycles-guided supramolecular photocatalysis[J].Beilstein J.Org.Chem.,2021,17:139-155.
[15]余诗雨,刘智敏,杨怡,等.瓜环试剂的发展及应用研究[J].化学试剂,2021,43(2):168-173.
[16]张倩,叶英杰,于琼燕,等.一个单核钴(Ⅱ)超分子配合物的合成、晶体结构及类Fenton催化性质研究[J].化学试剂,2022,44(9):1 294-1 298.
[17]GOKEL G W,LEEVY W M,WEBER M E.Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models[J].Chem.Rev.,2004,104(5):2 723-2 750.
[18]CRINI G.Review:A history of cyclodextrins[J].Chem.Rev.,2014,114(21):10 940-10 975.
[19]DURMAZ M,HALAY E,BOZKURT S.Recent applications of chiral calixarenes in asymmetric catalysis[J].Beilstein J.Org.Chem.,2018,14:1 389-1 412.
[20]ASSAF K I,NAU W M.Cucurbiturils:From synthesis to high-affinity binding and catalysis[J].Chem.Soc.Rev.,2015,44(2):394-418.
[21]OGOSHI T,KANAI S,FUJINAMI S,et al.Para-bridged symmetrical pillar[5]arenes:Their lewis acid catalyzed synthesis and host-guest property[J].J.Am.Chem.Soc.,2008,130(15):5 022-5 023.
[22]FENG W,JIN M,YANG K,et al.Supramolecular delivery systems based on pillararenes[J].Chem.Commun.,2018,54(97):13 626-13 640.
[23]WANG K Y,TIAN X Q,JORDAN J H,et al.The emerging applications of pillararene architectures in supramolecular catalysis[J].Chin.Chem.Lett.,2022,33(1):89-96.
[24]JI J,WEI X,WU W,et al.The more the slower:Self-inhibition in supramolecular chirality induction,memory,erasure,and reversion[J].J.Am.Chem.Soc.,2022,144(3):1 455-1 463.
[25]LI Z,YANG Z,ZHANG Y,et al.Synthesis of an acidochromic and nitroaromatic responsive hydrazone-linked pillararene framework by a macrocycle-to-framework strategy[J].Angew.Chem.Int.Ed.,2022,61(38):e202 206 144.
[26]WANG X,LIU Z J,HILL E H,et al.Organic-inorganic hybrid pillarene-based nanomaterial for label-free sensing and catalysis[J].Matter,2019,1(4):848-861.
[27]WANG Y,LV M Z,SONG N,et al.Dual-stimuli-responsive fluorescent supramolecular polymer based on a diselenium-bridged pillar[5]arene dimer and an AIE-active tetraphenylethylene guest[J].Macromolecules,2017,50(15):5 759-5 766.
[28]GUO S,HUANG Q,WEI J,et al.Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5]arene skeleton[J].Nano Today,2022,43:101 396.
[29]OGOSHI T,UESHIMA N,YAMAGISHI T A.An amphiphilic pillar[5]arene as efficient and substrate-selective phase-transfer catalyst[J].Org.Lett.,2013,15(14):3 742-3 745.
[30]KOSIOREK S,RAD N,SASHUK V.Supramolecular catalysis by carboxylated pillar[n]arenes[J].Chemcatchem,2020,12(10):2 776-2 782.
[31]YAO Y,XUE M,CHI X,et al.A new water-soluble pillar[5]arene:Synthesis and application in the preparation of gold nanoparticles[J].Chem.Commun.,2012,48(52):6 505-6 507.
[32]WANG K,JORDAN J H,VELMURUGAN K,et al.Role of functionalized pillararene architectures in supramolecular catalysis[J].Angew.Chem.Int.Ed.,2021,60(17):9 205-9 214.
[33]WANG K,TIAN X,JORDAN J H,et al.The emerging applications of pillararene architectures in supramolecular catalysis[J].Chin.Chem.Lett.,2022,33(1):89-96.
[34]LI B,LI Z,ZHOU L,et al.Recent progresses in pillar[n]arene-based photocatalysis[J].J.Mater.Sci.,2022,57(34):16 175-16 191.
[35]HASHIMOTO T,MARUOKA K.Recent development and application of chiral phase-transfer catalysts[J].Chem.Rev.,2007,107(12):5 656-5 682.
[36]SHIN J A,LIM Y G,LEE K H.Copper-catalyzed azide-alkyne cycloaddition reaction in water using cyclodextrin as a phase transfer catalyst[J].J.Org.Chem.,2012,77(8):4 117-4 122.
[37]SUN Y,GUO F,ZUO T,et al.Stimulus-responsive light-harvesting complexes based on the pillararene-induced co-assembly of beta-carotene and chlorophyll[J].Nat.Commun.,2016,7:12 042.
[38]BENATMANE M,COUSIN K,LAGGOUNE N,et al.Pillar[5]arenes as supramolecular hosts in aqueous biphasic rhodium-catalyzed hydroformylation of long alkyl-chain alkenes[J].Chemcatchem,2018,10(22):5 306-5 313.
[39]HAO M,SUN G,ZUO M,et al.A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis[J].Angew.Chem.Int.Ed.,2020,59(25):10 095-10 100.
[40]姚家斌,伍晚花,杨成.基于环糊精的超分子手性光化学反应[J].有机化学,2014,34(1):26-35.
[41]WEI X,WU W,MATSUSHITA R,et al.Supramolecular photochirogenesis driven by higher-order complexation:Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2∶2 complex with β-cyclodextrin[J].J.Am.Chem.Soc.,2018,140(11):3 959-3 974.
[42]RAO M,KANAGARAJ K,FAN C,et al.Photocatalytic supramolecular enantiodifferentiating dimerization of 2-anthracenecarboxylic acid through triplet-triplet annihilation[J].Org.Lett.,2018,20(6):1 680-1 683.
[43]JI J,WU W,LIANG W,et al.An ultimate stereocontrol in supramolecular photochirogenesis:Photocyclodimerization of 2-anthracenecarboxylate mediated by sulfur-linked β-cyclodextrin dimers[J].J.Am.Chem.Soc.,2019,141(23):9 225-9 238.
[44]WEI X,RAJ A M,JI J,et al.Reversal of regioselectivity during photodimerization of 2-anthracenecarboxylic acid in a water-soluble organic cavitand[J].Org.Lett.,2019,21(19):7 868-7 872.
[45]WEI X,LIU J,XIA G J,et al.Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures[J].Nat.Chem.,2020,12(6):551-559.
[46]WEI X,JI J,NIE Y,et al.Synthesis of cyclodextrin derivatives for enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate[J].Nat.Protoc.,2022,https://doi.org/10.1038/s41596-022-00722-6.
[47]SUN G,QIAN W,JIAO J,et al.A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly[J].J.Mater.Chem.A,2020,8(19):9 590-9 596.
[48]LI M H,YANG Z Q,LI Z,et al.Construction of hydrazone-linked macrocycle-enriched covalent organic frameworks for highly efficient photocatalysis[J].Chem.Mater.,2022,34(12):5 726-5 739.
[49]QIANG H,CHEN T,WANG Z,et al.Pillar[5]arene based conjugated macrocycle polymers with unique photocatalytic selectivity[J].Chin.Chem.Lett.,2020,31(12):3 225-3 229.
[50]ZUO M Z,QIAN W R,HAO M,et al.An AIE singlet oxygen generation system based on supramolecular strategy[J].Chin.Chem.Lett.,2021,32(4):1 381-1 384.
[51]GUI J C,YAN Z Q,PENG Y,et al.Enhanced head-to-head photodimers in the photocyclodimerization of anthracenecarboxylic acid with a cationic pillar[6]arene[J].Chin.Chem.Lett.,2016,27(7):1 017-1 021.
[52]JI J,WU W,WEI X,et al.Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts[J].Chem.Commun.,2020,56(46):6 197-6 200.
[53]LI Z,LI L,WANG Y,et al.Pillararene-enriched linear conjugated polymer materials with thiazolo[5,4-d]thiazole linkages for photocatalysis[J].Chem.Commun.,2021,57(53):6 546-6 549.
[54]SCHMIDT M,ESSER B.Cavity-promotion by pillar[5]arenes expedites organic photoredox-catalysed reductive dehalogenations[J].Chem.Commun.,2021,57(75):9 582-9 585.
[55]LIU Y,LOU B,SHANGGUAN L,et al.Pillar[5]arene-based organometallic cross-linked polymer:Synthesis,structure characterization,and catalytic activity in the suzuki-miyaura coupling reaction[J].Macromolecules,2018,51(4):1 351-1 356.
[56]CHENG N,CHEN Y,WU X,et al.2D organic-inorganic nanosheets via self-assembly of a pillar[6]arene and polyoxometalate for enhanced degradation efficiency[J].Chem.Commun.,2018,54(49):6 284-6 287.
[57]LOU X Y,YANG Y W.Pillar[n]arene-based supramolecular switches in solution and on surfaces[J].Adv.Mater.,2020,32(43):2 003 263.
[58]TAN X,XU J,HUANG T,et al.Graphdiyne bearing pillar[5]arene-reduced Au nanoparticles for enhanced catalytic performance towards the reduction of 4-nitrophenol and methylene blue[J].RSC Adv.,2019,9(66):38 372-38 380.
[59]TAN X,ZENG W,FAN Y,et al.Covalent organic frameworks bearing pillar[6]arene-reduced Au nanoparticles for the catalytic reduction of nitroaromatics[J].Nanotechnology,2020,31(13):135 705.
[60]LI Z,LI X,YANG Y W.Conjugated macrocycle polymer nanoparticles with alternating pillarenes and porphyrins as struts and cyclic nodes[J].Small,2019,15(12):e1 805 509.
[61]LAN S,YANG X,SHI K J,et al.Pillarquinone-based porous polymer for a highly-efficient heterogeneous organometallic catalysis[J].Chemcatchem,2019,11(12):2 864-2 869.
[62]WU Y T,LI Q,CAO J J,et al.Pillararene-peptide nanogels and their biomimetic mineralization hybrids for heterogeneous catalysis[J].ACS Appl.Nano Mater.,2021,4(10):11 126-11 133.
[63]WU H,WANG M,JING F,et al.Enhanced photocatalytic hydrogen production performance of pillararene-doped mesoporous TiO2 with extended visible-light response[J].Chin.Chem.Lett.,2022,33(4):1 983-1 987.
基本信息:
DOI:10.13822/j.cnki.hxsj.2022.0788
中图分类号:O621.251;O641.3
引用信息:
[1]聂永欣,王繁盛,刘泽恩等.基于柱芳烃的超分子催化研究进展[J].化学试剂,2023,45(03):10-21.DOI:10.13822/j.cnki.hxsj.2022.0788.
基金信息:
国家自然科学基金项目(22001046); 广西自然科学基金项目(2021JJB120031); 2021年广西硕士研究生创新项目(YCSW2021129)