17 | 0 | 25 |
下载次数 | 被引频次 | 阅读次数 |
硫化亚锡(SnS)具有理论容量高、层间距大以及电压平台低等特点,被视为是极具应用前景的钠离子电池(SIBs)负极材料之一。然而,SnS较差的本征导电性及其在循环过程中严重的体积变化,极大地限制了其应用。采用原位生长策略,分别以锡酸钾、六水合氯化钴和硫代乙酰胺为锡源、钴源和硫源,成功制备出氮化硼(BN)负载的SnS-Co1-xS异质结构负极。利用扫描电子显微镜、透射电子显微镜、X射线衍射和X射线光电子能谱等表征手段,对合成材料进行形貌、结构表征。利用循环伏安测试、恒流充放电测试、阻抗测试和恒电流间歇滴定技术,研究材料的电化学性能和电化学动力学。实验结果表明,BN的引入降低了SnS纳米片的厚度,促进了SnS和Co1-xS的均匀分散,提供了丰富的SnS-Co1-xS界面,增强了SnS与Co1-xS之间的相互作用和电荷转移,从而改善了SnS的本征导电率,并促进了其电化学动力学。所制备的SnS-Co1-xS/BN电极在2 A/g的电流密度下,比容量为433.9 mAh/g;在0.5 A/g的电流密度下循环200次,比容量高达496.4 mAh/g,表现出较好的倍率性能和循环稳定性。该研究成果提出了一种构筑高性能SnS负极的新策略。
Abstract:Tin sulfide(SnS) is regarded as one of the most highly promising anode materials for sodium-ion batteries(SIBs) due to its high theoretical capacity, large interlayer spacing, and suitable voltage platform.However, its poor intrinsic conductivity and the severe volume expansion during the cycling process have significantly restricted its further application.Boron nitride(BN) supported SnS-Co1-xS heterostructures were obtained via an in situ growth strategy using potassium stannate, cobalt chloride hexahydrate, and thioacetamide as the tin, cobalt, and sulfur sources, respectively.The morphology and structure of the synthetized materials were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction spectrometer, and X-ray photoelectron spectroscopies.The electrochemical performance and electrochemical kinetics of the materials were analyzed through cyclic voltammetry, galvanostatic charge/discharge testing, electrochemical impedance spectroscopy, and galvanostatic intermittent titration techniques.The experimental results showed that the introduction of BN reduced the thickness of SnS nanosheets, promoted the uniform dispersion of SnS and Co1-xS,provided abundant SnS-Co1-xS interface, and enhanced the interaction and charge transfer between SnS and Co1-xS,thereby improving the intrinsic conductivity of SnS and accelerating its electrochemical kinetics.As a result, the prepared SnS-Co1-xS/BN delivered a specific capacity of 433.9 mAh/g at a high current density of 2 A/g and maintained a high specific capacity of 496.4 mAh/g after 200 cycles at 0.5 A/g, showing excellent rate performance and high cycling stability.The research provides a new strategy for designing high performance SnS anode for SIBs.
[1]Zheng Y,Zhou T F,Zhang C F,Mao J F,Liu H K,Guo Z P.Angew.Chem.Int.Ed.,2016,55(10):3 408-3 413.
[2]He P L,Fang Y J,Yu X Y,Lou X W.Angew.Chem.Int.Ed.,2017,56(40):12 202-12 205.
[3]Yang Y,Chen P,Shi Z C.Chem.Reagents,2025,47(1):45-50.杨耀,陈平,施志聪.化学试剂,2025,47(1):45-50.
[4]Xu L H,Liu Y J,Hu X,Wu Y M,Wen Z H,Li J H.Acc.Mater.Res.,2024,5(7):822-835.
[5]Wang Y,Li H G,Chen S L,Zhai B Y,Di S L,Gao G Y,Lee S,Chun S,Wang S L,Li L.Sci.Bull.,2022,67(20):2 085-2 095.
[6]Ma J C,Shi N,Lv R S,Wu L J,Wei J L,Zhang Y Z,Zhang J,Jia J F.Phys.Test.Chem.Anal.,Part B,2024,60(11):1 110-1 118.马建春,石楠,吕闰生,武莉洁,韦佳乐,张叶臻,张军,贾建峰.理化检验-化学分册,2024,60(11):1 110-1 118.
[7]Li Z,Ding J,Mitlin D.Acc.Chem.Res.,2015,48(6):1 657-1 665.
[8]Lian X Y,Xu N,Ma Y C,Hu F,Wei H X,Chen H Y,Wu Y Z,Li L L,Li D S,Peng S J.Chem.Eng.J.,2021,421:127 755.
[9]Wan S Y,Cheng M,Chen H Y,Zhu H J,Liu Q M.J.Colloid.Interface Sci.,2022,609:403-413.
[10]Behyar M B,Mirzaie A,Hasanzadeh M,Shadjou N.TrAC Trend.Anal.Chem.,2024,173:117 600.
[11]Tomboc G M,Wang Y T,Wang H,Li J H,Lee K.Energy Storage Mater.,2021,39:21-44.
[12]Lin J,Yao L X,Zhang C Y,Ding H R,Wu Y H,Li S,Han J J,Yue G H,Peng D L.ACS Sustainable Chem.Eng.,2021,9(33):11 280-11 289.
[13]Lee J,Choi C,Lee H,Ma S,Tan J,Jang G,Shim S G,Park Y S,Yun J,Kim D W,Moon J.Adv.Energy Mater.,2021,12(8):2 103 138.
[14]Tang L B,Zhang B,Peng T,He Z J,Yan C,Mao J,Dai K H,Wu X W,Zheng J C.Nano.Energy,2021,90:106 568.
[15]Wang X,Li X Y,Li Q,Li H S,Xu J,Wang H,Zhao G X,Lu L S,Lin X Y,Li H L,Li S D.Nanomicro Lett.,2018,10(3):46.
[16]Liu G L,Yuan W Z,Zhao Z H,Li J,Wu N T,Guo D L,Liu X,Liu Y,Cao A,Liu X M.Chem.Eng.J.,2024,493:152 576.
[17]Cheng D L,Ye L Y,Wei A K,Xu G D,Cao Z J,Zhu P P,Chen Y W.Chem.Eng.J.,2023,457:141 243.
[18]Maity C K,Sahoo S,Verma K,Nayak G C.Energy Fuels,2022,36(4):2 248-2 259.
[19]Wu X F,Li H,Sun Y,Wang Y J,Zhang C X,Su J Z,Zhang J R,Yang F F,Zhang Y,Pan J C.Appl.Phy.A,2017,123(11):709.
[20]Liu G L,Zhang T,Li X J,Li J,Wu N T,Cao A,Yuan W W,Pan K M,Guo D L,Liu X M.Inorg.Chem.Front.,2023,10(5):1 587-1 602.
[21]Wan S Y,Liu Q M,Chen H Y,Zhu H J,Wang Y L,Cao S Y.J.Power Sources,2022,542:231 804.
[22]Zhang Y X,Jin Y H,Song Y Y,Wang H,Jia M Q.Appl.Surf.Sci.,2023,637:157 938.
[23]Ma Z,Han Y,Wang X,Sun G W,Li Y.J.Colloid Interface Sci.,2023,634:469-480.
[24]Li J N,Liu T T,Dahlgren R A,Ye H Z,Wang Q,Ding Y L,Gao M,Wang X D,Wang H L.Anal.Chim.Acta,2022,1 204:339 703.
[25]Shi L D,Li D Z,Yao P P,Yu J L,Li C H,Yang B,Zhu C Z,Xu J.Small,2018,14(41):1 802 716.
[26]Liu Y Y,Jiang W L,Liu M,Zhang L,Qiang C C,Fang Z.Langmuir,2019,35(50):16 487-16 495.
[27]Wu H,Li S,Yu X B.J.Colloid Interface Sci.,2024,653:267-276.
[28]Yan B,Lin L C,Sun H,Zhang T T,Sun C,Zhang L L,Yang X L.Chem.Eng.J.,2023,477:146 950.
[29]Pan Y T,Chen W,Zheng C,Lv Z R,Zhong M J,Hu K Y,Huang F Q,Dong W J.Small,2024,20(44):2 404 127.
[30]Li H,He Y Y,Dai Y X,Ren Y Q,Gao T T,Zhou G W.Chem.Eng.J.,2022,427:131 784.
[31]Zhao F J,Xiao X Y,Yang L Y,Zhen W,Xu S R,Liu J.Chem.Eng.J.,2021,425:130 534.
[32]Shi J R,Wang Y P,Su Q,Cheng F Y,Kong X Z,Lin J D,Zhu T,Liang S Q,Pan A Q.Chem.Eng.J.,2018,353:606-614.
基本信息:
DOI:10.13822/j.cnki.hxsj.2025.0043
中图分类号:TM912;TB34
引用信息:
[1]徐明远,王利娟,刘贵龙.BN负载的SnS-Co_(1-x)S异质结构的制备及其储钠性能研究[J].化学试剂,2025,47(07):50-56.DOI:10.13822/j.cnki.hxsj.2025.0043.
基金信息:
河南省高校科技创新人才支持计划项目(24HASTIT006); 河南省自然科学基金项目(242300420045); 辽宁省科学技术计划(面上)项目(2024-MS-180); 辽宁省教育厅面上项目(LJ212410148020)